

DVPCOPM-SL CANopen 通讯模块 操作手册

注意事项

- ✓ 此应用技术手册提供功能规格、安装、基本操作与设定,以及有关于网络协议内容的介绍。
- ✓ 本机为开放型 (OPEN TYPE) 机壳,因此使用者使用本机时,必须将其安装于具防尘、防潮及免于电击/冲击意外的外壳配线箱内。另必须具备保护措施 (如:特殊的工具或钥匙才可打开),防止非维护人员操作或意外冲击本体,造成危险及损坏,且请勿在上电时触摸任何端子。
- ✓ 请务必仔细阅读本使用手册,并依照本手册指示进行操作,以免造成产品受损,或导致人员受伤。

型 目录

1	DVP	COPM-SL 简介	3
	1.1	DVPCOPM-SL 功能简介	3
	1.2	功能规格	4
	1.3	DVPCOPM-SL 输入/输出映射区说明	5
2	DVP	COPM-SL 单元部件	7
	2.1	外观尺寸	7
	2.2	各部介绍	7
	2.3	CANopen 通讯连接器	8
	2.4	地址设定开关	8
	2.5	功能设定开关	8
	2.6	数字显示器	9
3	DVP	COPM-SL 基本操作	9
	3.1	安装 SV 主机与 DVPCOPM-SL 模块	9
	3.2	安装 SV 主机及 DVPCOPM-SL 模块于导轨	9
	3.3	安装 CANopen 通讯连接器	10
4	组建	CANOPEN 网络	10
	4.1	组建 CANopen 网络	11
	4.2	CANopen 网络中的数据映射	12
	4.3	使用 Delta CANopenBuilder 软件组态网络	13
	4.4	保存组态数据	23
	4.5	CANopen 网络控制	23
5	梯形	图发送 SDO、NMT 及读取 EMERGENCY 信息	25
	5.1	实现原理	25
	5.2	SDO 请求信息的数据结构	25
	53	NIMT 服久信自的粉坭结构	27

CANopen 通讯模块 DVPCOPM-SL

	5.4	Emergency 请求信息的数据结构	. 28
	5.5	应用范例	. 29
6	网络节	5点状态显示	. 33
	6.1	CANopen 网络中从站状态	. 33
	6.2	CANopen 网络中主站状态	. 33
	6.3	CANopen 网络状态	. 34
	6.4	SDO 请求信息的数据结构	. 34
	6.5	应用范例	. 36
7	LED :	灯指示说明及故障排除	. 38
	7.1	POWER 灯显示说明	. 38
	7.2	RUN 灯显示说明	. 38
	7.3	ERR 灯显示说明	. 38
	7.4	数字显示器显示说明	. 39
8	DVPC	:OPM-SL 作为 CANOPEN 从站时的索引/子索引说明	. 41

1 DVPCOPM-SL 简介

- 1. 谢谢您使用台达 DVPCOPM-SL 模块。为了确保能正确地安装及操作本产品,请在使用该模块之前, 仔细阅读该使用手册。
- 2. 该手册仅作为 DVPCOPM-SL 操作指南和入门参考,CANopen 协议的详细内容这里不作介绍。如果 读者想要了解更多关于 CANopen 协议的内容,请参阅相关专业文章或书籍资料。
- 3. DVPCOPM-SL 是运行于 PLC 主机左侧的 CANopen 模块。PLC 主机左侧最多可以接 8 台 DVPCOPM-SL 模块。当 PLC 主机通过 DVPCOPM-SL 主站模块与 CANopen 网络相连时, DVPCOPM-SL 主站模块负责 PLC 与总线上其它从站的数据交换。DVPCOPM-SL 主站模块负责将 PLC 的数据传送到总线上的从站,同时将总线上各个从站返回的数据传回 PLC,实现数据交换。
- 4. 左侧可以接 DVPCOPM-SL 模块的 PLC 主机有 DVP-28SV, DVP-SX2, DVP-EH2-L。

1.1 DVPCOPM-SL 功能简介

DVPCOPM-SL CANopen 模块可以作为 CANopen 网络的主站使用,也可以作为其它主站的一个从站来使用。

当作为主站使用时,有如下功能:

- 符合 CANopen 标准协议 DS301v4.02
- 支持 NMT Master 服务
- 错误控制: 支持 Heartbeat /Node Guarding Protocol
- 支持 PDO 服务:

每个从站最多可配置 8 个 TxPDO 和 8 个 RxPDO

PDO 传输类型:支持事件触发,时间触发,同步周期,同步非周期

PDO 映射:每个 PDO 最大可以映射 32 个参数

支持的映射数据类型:

存储空间	数据类型	
1bit	BOOL	
8bit	SINT USINT BYTE	
16bit	INT UINT WORD	
32bit	DINT UDINT REAL DWORD	
64bit	LINT ULINT LREAL LWORD	

支持 SDO 服务:

服务器端: 0个

客户端: 3个

支持标准 SDO 快速(expedited SDO)传输模式

支持 Auto SDO 功能,最大可对每一台从站执行 20 笔 Auto SDO

支持在 PLC 梯形图中使用 SDO 服务读写从站数据

● 支持 Emergency Protocol:

可为每个从站保存 5 笔最新的 Emergency 信息可通过数字显示器指示从站存有 Emergency 信息可通过 PLC 梯形图读取 Emergency 信息

- 同步信息产生器 (SYNC producer, range 0-65535ms)
- 作为 Delta CANopenBuilder 配置软件与 CANopen 网络连接的界面,配置软件可以通过 DVPCOPM-SL 模块直接对网络进行组态
- 与 PLC 主机自动交换数据,用户编程时只需对 PLC 主机中映射的 D 寄存器编程即可,无需 From/To 指令,在与 PLC 主机连接时,会暂用 D6000 之后的寄存器

当作为从站使用时,有如下功能:

- 符合 CANopen 标准协议 DS301v4.02
- 支持 NMT Slave 服务
- 错误控制: 支持 Heartbeat Protocol
- 支持 PDO 服务:每个从站最多可配置 8 个 TxPDO 和 8 个 RxPDO
- PDO 传输类型:支持事件触发,时间触发,同步周期,同步非周期
- 支持 SDO 服务:

服务器端: 1个

客户端: 0个

支持标准 SDO 快速(expedited SDO)传输模式

● 支持 Emergency Protocol

可通过数字显示器指示从站发生 Emergency 事件

1.2 功能规格

■ CANopen 连接器

项目	规格
传输方式	CAN
电气隔离	500 VDC
接头	可插拔式连接器(5.08mm)
传输电缆	两条通讯线、一条屏蔽线和一条接地线

4

■ 通讯

项目	规格
信息类型	PDO、SDO、SYNC(同步对象)、Emergency(紧急对象)、NMT
串行传输速度	支持 10 kbps、20 kbps、50 kbps、125 kbps、250 kbps、500 kbps、800 kbps、1 Mbps(位/秒)

■ 电气规格

项目	规格
电源电压	由主机经由内部总线供应 24 VDC (-15% ~ 20%)
消耗电力	1.7 W
绝缘电压	500 V

■ 环境规格

项目	规格
噪声免疫力	ESD (IEC 61131-2, IEC 61000-4-2): 8KV Air Discharge, 4KV Contact Discharge EFT (IEC 61131-2, IEC 61000-4-4): Power Line: 2KV, Digital I/O: 1KV Analog & Communication I/O: 1KV Damped-Oscillatory Wave: Power Line: 1KV, Digital I/O: 1KV RS (IEC 61131-2, IEC 61000-4-3): 80MHz~1000MHz, 1.4GHz~2.0GHz, 10V/m
操作温度	0°C ~ 55°C (温度)、50 ~ 95% (湿度)、污染等级 2
储存温度	-25°C ~ 70°C (温度)、5 ~ 95% (湿度)
耐振动/冲击	国际标准规范 IEC 61131-2、IEC 68-2-6 (TEST Fc)/IEC 61131-2 & IEC 68-2-27 (TEST Ea)
标准	IEC 61131-2、UL508 标准

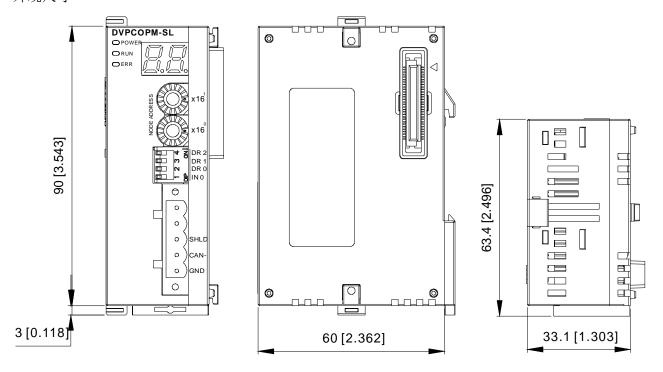
1.3 DVPCOPM-SL 输入/输出映射区说明

DVPCOPM-SL 做为 CANopen 主站时,在 PLC 主机左侧不同位置的输入/输出映射区如下表所示,在 PLC 主机左侧第一台的位置为 1,第二台的位置为 2,其它位置以此类推。

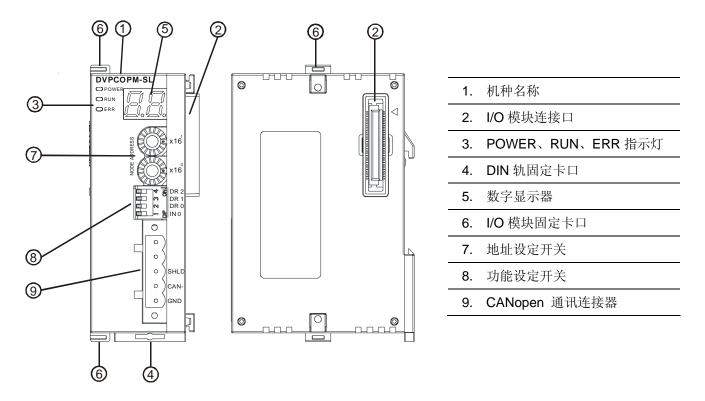
映射区 位置	输出映射区	输入映射区
1	D6250~D6476	D6000~D6226
2	D6750~D6976	D6500~D6726
3	D7250~D7476	D7000~D7226
4	D7750~D7976	D7500~D7726
5	D8250~D8476	D8000~D8226
6	D8750~D8976	D8500~D8726
7	D9250~D9476	D9000~D9226
8	D9750~D9976	D9500~D9726

DVPCOPM-SL 做为 CANopen 主站时,在 PLC 主机左侧不同位置的 SDO、NMT、Emergency 映射区和 PDO 映射区如下表所示,在 PLC 主机左侧第一台的位置为 1,第二台的位置为 2,其它位置以此类推。

位置 映射区	SDO、NMT、 Emergency 请求信息区	SDO、NMT、 Emergency 回应信息区	RxPDO 映射区	TxPDO 映射区
1	D6250~D6281	D6000~D6031	D6282~D6476	D6032~D6226
2	D6750~D6781	D6500~D6531	D6782~D6976	D6532~D6726
3	D7250~D7281	D7000~D7031	D7282~D7476	D7032~D7226
4	D7750~D7781	D7500~D7531	D7782~D7976	D7532~D7726
5	D8250~D8281	D8000~D8031	D8282~D8476	D8032~D8226
6	D8750~D8781	D8500~D8531	D8782~D8976	D8532~D8726
7	D9250~D9281	D9000~D9031	D9282~D9476	D9032~D9226
8	D9750~D9781	D9500~D9531	D9782~D9976	D9532~D9726

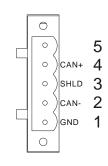

DVPCOPM-SL 做为 CANopen 从站时,在 PLC 主机左侧不同位置的输入/输出映射区如下表所示,在 PLC 主机左侧第一台的位置为 1,第二台的位置为 2,其它位置以此类推。

映射区 位置	输出映射区	输入映射区
1	D6282~D6476	D6032~D6226
2	D6782~D6976	D6532~D6726
3	D7282~D7476	D7032~D7226
4	D7782~ D7976	D7532~D7726
5	D8282~ D8476	D8032~D8226
6	D8782~D8976	D8532~D8726
7	D9282~D9476	D9032~D9226
8	D9782~D9976	D9532~D9726


2 DVPCOPM-SL 单元部件

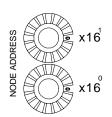
本部分主要介绍 DVPCOPM-SL 的单元部件,DVPCOPM-SL 的单元部件包括 CANopen 通讯连接器、地址设定开关、功能设定开关、数字显示器。

2.1 外观尺寸


2.2 各部介绍

2.3 CANopen 通讯连接器

用于与 CANopen 网络连接,使用 DVPCOPM-SL 自带的连接器进行配线。

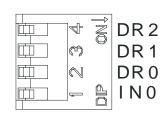

引脚	信号	说明
1	GND	0 VDC
2	CAN_L	Signal-
3	SHLD	屏蔽线
4	CAN_H	Signal+
5	-	保留

2.4 地址设定开关

用于设置 DVPCOPM-SL 模块在 CANopen 网络上的节点地址。设置范围: 1~7F(0,80~FF 不可用)。

旋转开关设定	说明
1~7F	有效的 CANopen 节点地址
0, 80 ~ FF	无效的 CANopen 节点地址

例如,用户需将 DVPCOPM-SL 模块的通讯地址设置为 26(1AH)时,只要将 x16¹对应的旋转开关旋转到 1,再将 x16⁰对应的旋转开关旋转到 A 即可。


注意事项:

- 请小心使用一字螺丝刀调节旋转开关,以免刮伤旋转开关。
- 地址设定开关只有在 DVPCOPM-SL 模块断电情况下设置才有效。完成设置后,再将模块上电。

2.5 功能设定开关

用于设置 DVPCOPM-SL 模块与 CANopen 网络之间的通讯速率 (DR0~DR2),各种通讯速率之间对应的最大通信距离有相应的限制。具体请参考下表:

DR2	DR1	DR0	通讯速率	最大通信距离
OFF	OFF	OFF	10 kbps	5000m
OFF	OFF	ON	20 kbps	2500m
OFF	ON	OFF	50 kbps	1000m
OFF	ON	ON	125 kbps	500m
ON	OFF	OFF	250 kbps	250m
ON	OFF	ON	500 kbps	100m
ON	ON	OFF	800 kbps	50m
ON	ON	ON	1 Mbps	25m
IN0			保留	

注意事项:

- 请小心使用一字螺丝刀调节 DIP 开关,以免刮伤
- 功能设定开关只有在 DVPCOPM-SL 模块断电情况下设置才有效。完成设置后,再将模块上电

2.6 数字显示器

数字显示器为用户提供以下功能:

- 显示 DVPCOPM-SL 模块的节点地址
- 显示从站的错误信息

3 DVPCOPM-SL 基本操作

- 3.1 安装 SV 主机与 DVPCOPM-SL 模块
 - 将 SV 主机左侧上下两端的 I/O 模块卡口打开,将 DVPCOPM-SL 模块沿四角上的导入孔装入,如图 3-1 步骤 ① 所示;
 - 压入 SV 主机上下两端的卡口,卡紧模块以保证接触良好,如图 3-1 步骤 ② 所示。

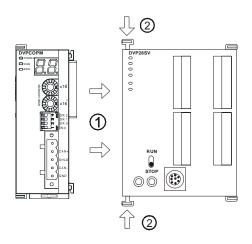
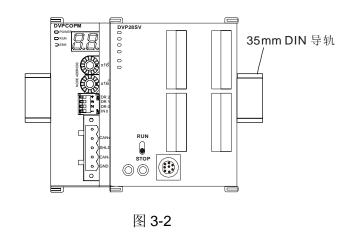
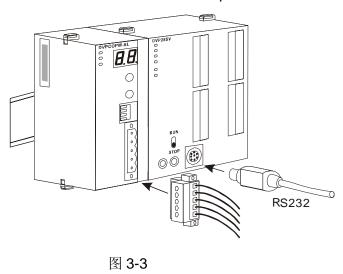



图 3-1


3.2 安装 SV 主机及 DVPCOPM-SL 模块于导轨

- 请使用 35mm 的标准 DIN 导轨
- 打开 SV 主机及 DVPCOPM-SL 模块的 DIN 轨固定扣,将 SV 主机及 DVPCOPM-SL 模块嵌入 DIN 导轨上
- 压入 SV 主机及 DVPCOPM-SL 模块的 DIN 轨固定扣,将 SV 主机及 DVPCOPM-SL 模块固定在 DIN 导轨上,如图 3-2 所示:

3.3 安装 CANopen 通讯连接器

- CANopen 通讯连接器的配线请按照其引脚定义进行配线。
- 按下图所示将通讯连接器端子插入 DVPCOPM-SL CANopen 通讯连接器内。

4 组建 CANopen 网络

本部分以一个 CANopen 网络示例,来介绍如何使用 DVPCOPM-SL 模块及一些其它的从站,来组成一个完整的 CANopen 网络。

当需要组建一个网络时,首先必须清楚组建此网络的功能需求,以及对需要进行交换的数据进行先期规划,包括要使用哪些从站,交换的数据及其传输类型,总的数据交换量以及对数据交换响应时间的要求等。这些信息将决定所组建的网络是否合理,是否能满足需求,甚至会直接影响到后期的可维护性及网络容量扩展升级的便利性。

本部分所组建的网络,将完成由一个数字 IO 模块 DVP-08ST,来控制一台 ASD-B 伺服驱动器的启动和停止及速度选择功能。

4.1 组建 CANopen 网络

所需设备及软件:

设备及软件名称	功能描述
DVP-PS02	24V 电源供应模块,为 IFD9503 供电
DVP-PS01	24V 电源供应模块,为 SV 和 SA PLC 供电
DVP-28SV	SV PLC 主机
DVPCOPM-SL	CANopen 主站模块
DVP-12SA	SA PLC 主机
DVP-08ST	数字量输入/输出模块
IFD9503	CANopen 总线适配器
ASD-B	台达B系列伺服驱动器
WPLSoft	DVP 系列 PLC 编程软件
Delta CANopenBuilder	DVPCOM-SL 主站模块所用的 CANopen 组态软件

● 按照下表分别对 DVPCOPM-SL 模块、IFD9503 进行设置。IFD9503 的详细操作说明请参考 IFD9503 使用手册。

模块名称	节点地址	通讯速率	
DVPCOPM-SL 模块	01	1 Mbps	
IFD9503 模块	02(连接伺服)	1 Mbps	
IFD9503 模块	03 (连接 SA)	1 Mbps	

ASD-B 的设置如下:

参数	设置値	说明	
P1-01	02	控制模式为速度模式	
P1-09	100(rpm)	内部速度指令1(SP1)	
P1-10	300(rpm)	内部速度指令2(SP2)	
P1-11	500(rpm)	内部速度指令3(SP3)	
P2-10	101	DI1功能:Servo on	
P2-11	114	DI2功能:SPD0	
P2-12	115	DI3功能:SPD1	
P2-18	102	DO1功能:Servo on时输出	
P3-00	1	Modbus通讯地址	
P3-01	5 (115200 bps)	Modbus通讯传输速率	
P3-02	1(7,E,1)	Modbus数据格式	
P3-06	3F	DI1~DI6由通讯控制	

● 按照图 4-1 组建 CANopen 网络

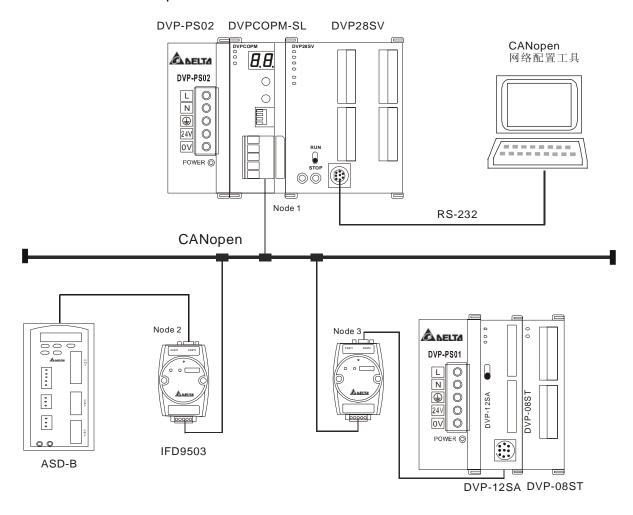


图 4-1

关于 IFD9503 与 PLC ,ASD-B 伺服驱动器及其它设备的连接,请参阅 IFD9503 模块使用手册。ASD-B 伺服驱动器的电气配线请参阅 ASD-B 伺服驱动器使用手册。

4.2 CANopen 网络中的数据映射

● DVP-12SA 主机的数据映射:

DVP-08ST 模块提供 8 通道的数字量输入,共提供 1 字节的输入数据。本例中, DVP-12SA 右侧的 DVP-08ST 模块的 X0 作为伺服驱动器的启动,停止开关, X1, X2 作为伺服驱动器的速度选择开关, 而 Y0 作为伺服驱动器运行状态的输出信号。具体说明见下表:

数字量输入/输出点	功能描述	
X0	控制伺服驱动器启动/停止	
X1, X2	伺服驱动器速度选择: X1=0, X2=1, 选择 SP1; X1=1, X2=0, 选择 SP2; X1=1, X2=1, 选择 SP3;	
Y0	伺服驱动器运行状态: ON - 伺服驱动器处于运行状态; OFF - 伺服驱动器处于停止状态	

12

IFD9503 连接 SA 主机时,在与 DVPCOPM-SL 主站交换数据时,默认情况下,其输入数据长度为 8 个字节,输出数据长度也为 8 个字节。SA 的装置 D256 是输入数据的起始装置,D0 是输出数据的起始装置。为实现 DVP-08ST X0,X1,X2 的控制功能,我们把 X0~ X2 的状态对应地放在 D256 的 bit 0~2,即 X0 ON 时,D256 的 bit 0 为 1; X1 ON 时,D256 的 bit 1 为 1。这样,我们可以通过 WPL 编程,根据 D256 内容的变化,从而实现对伺服驱动器的启动,停止和速度选择的控制。同时把伺服驱动器的状态字传送到 D0,当 D0 的 bit 0 为 1 时,则 Y0 通道有信号。

DVPCOPM-SL 主站和 SA PLC 主机的映射关系下表:

主站映射寄存器	总线数据传输方向	从站映射寄存器
D6032	4	D256
D6033		D257
D6034		D258
D6035		D259
D6282		D0
D6283		D1
D6284		D2
D6285		D3

● ASD-B 的数据映射:

本例中,使用 IFD9503 模块作为 ASD-B 伺服驱动器与 CANopen 网络连接的接口。在默认状态下,IFD9503 提供 1 个 Word 的输入数据和 1 个 Word 的输出数据与 DVPCOPM-SL 主站模块进行数据交换。

DVPCOPM-SL 主站和 ASD-B 的映射关系见下表:

主站映射寄存器	总线数据传输方向	从站映射寄存器
D6036		P4-09 (数字输出节点状态显示)
D6286		P4-07 (数字输入点多重功能选择)

4.3 使用 Delta CANopenBuilder 软件组态网络

- 使用 Delta CANopenBuilder 软件扫描网络
 - (1) 打开 Delta CANopenBuilder 软件,软件界面如图 4-2 所示。

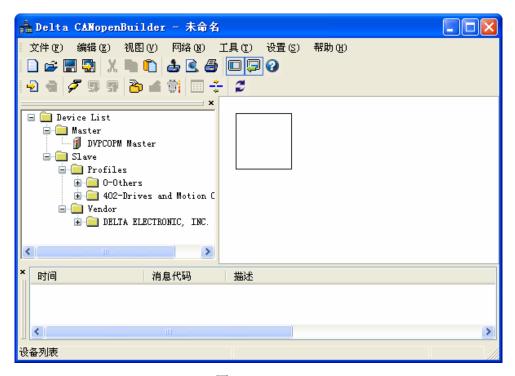


图 4-2

(2) 选择"设置">>"通讯设置">>"系统通道",即出现"串口设定"对话框,如图 4-3 所示。

图 4-3

(3) 在此对 PC 与 SV 主机的通讯参数进行设置。如"通讯口"、"通讯地址"、"通讯速度"、"通讯格式"。 设置正确后点击"确定"按钮,返回主界面。

项目	说明	默认值
串口	选择用来与 SV 主机通讯的计算机串口	COM1
通讯地址	SV 主机的通讯地址	01
波特率	设置计算机与SV主机的通讯速率	9600 bps
数据位		7
奇偶校验	设置计算机与 SV 主机的通讯协议	偶校验
停止位		1
模式	设置计算机与SV主机的通讯模式	ASCII Mode

(4) 选择菜单"网络" >>"在线"。本例中,如果与 SV 主机的连接正常,则会出现如图 4-4 的画面。

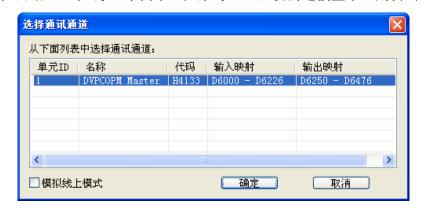


图 4-4

当 SV 左侧连的 DVPCOPM-SL 模块不止一台(不超过 8 台)时,如连了两台,则点击"在线"后,会出现如图 4-5 所示画面。这里以最靠近 SV 的为第一台,依次类推。

图 4-5

(5) 选择需建立通信的相应 DVPCOPM-SL 模块,点击"确定"按钮开始扫描网络上的所有从站。如果 网络安装及电源供应正常,则可以看到如图 4-6 的画面:



图 4-6

(6) 正常情况下,扫描结束后,可以出现如图 4-7 所示的 CANopen 网络中主站和所有从站的图标。

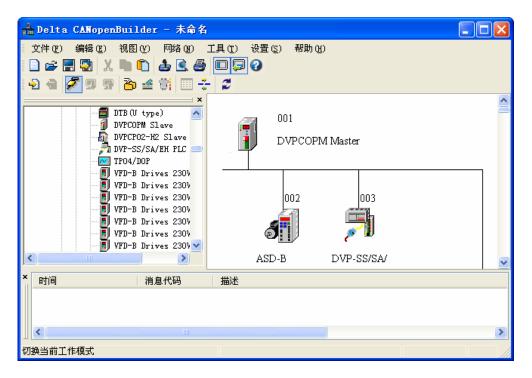


图 4-7

● CANopen 网络中主站参数设定

选择菜单"网络">>"主站参数",会跳出如图 4-8 所示画面。

主站配置				X
Node 名称:	1 DVPC	OPM Master		
工作模式	】 象(SYN	Master Mode		~
COB-I 同步周		128 50	x100	00us
Heart Beat 协议 如果主站的heartbeat是0,则表示禁止 heartbeat功能。				
主站heartbeat时间: 200 ms				
确定取消				

图 4-8

工作模式:选择 DVPCOPM-SL 模块的工作模式,可选择 Master Mode 或 Slave Mode。

同步周期:设定发送同步信息的周期。

主站 heartbeat time:设定 DVPCOPM-SL 发送心跳报文的周期。

设定好参数值后,点"确定"按钮。

16

- CANopen 网络中从站参数设定
 - 以 ASD-B 伺服驱动器的参数设置为例。
 - (1) 双击 ASD-B 图标,会跳出如图 4-9 所示画面。

图 4-9

(2) 相关参数设置:

错误控制协议: 在"节点配置"界面中,单击"错误控制协议"选项,会跳出如图 4-10 的画面。

图 4-10

图 4-10 各项参数的含义见下表:

参	数名称	说明	备注
Guard 时间		主站按 Guard Time 设定的时间间隔去轮询从站	当选择"Heartbeat"后,
Node Guarding			就不能再选择"Node Guarding"。
Heartbeat	从站 Heartbeat 产生时间	从站按"从站 Heartbeat 产生时间"周期发送 Heartbeat 报文给主站。	主站监控超时时间要大于
Tlearibeat	主站监控超时 时间	如果主站在"主站监控超时时间"没有收到从站的 Heartbeat 报文,主站就认为该从站掉线。	从站 Heartbeat 产生时间。
节点列表		CANopen 网络中配置的所有节点都显示在节点列表内。	无
Heartbeat 监控		配置此"错误控制设定"的节点可以监控 "Heartbeat 监控"栏内配置的节点是否掉线。	"Heartbeat 监控"栏内只 能配置一个节点。
▶ 按钮		选择"节点列表"一栏内的某一节点,点击 步按 钮可将选择的节点添加到"Heartbeat 监控"一栏内。	无
★ 按钮		选择"Heartbeat 监控"一栏内的某一节点,点击上按钮可将选择的节点从"Heartbeat 监控"一栏内删除。	无
编辑按钮		按钮 选择"Heartbeat 监控"一栏内的某一节点,点击"编辑"按钮可以更改监控时间。	
确认按钮		点击"确认"按钮后返回"节点配置"对话框, "错误控制设定"对话框内设置的参数被保存。	无
取消按钮		点击"取消"按钮后返回"节点配置"对话框, "错误控制设定"对话框内设置的参数无效。	

自动 SDO 配置: 在"节点配置"界面中,单击"自动 SDO 配置"选项,会跳出如图 4-11 的画面。点击"添加"选项可编辑自动 SDO,点击"编辑"选项可以对选中的自动 SDO 进行修改。每台从站配置自动 SDO 最大笔数为 20 笔。自动 SDO 只能写参数,不能读参数,自动 SDO 只在从站由欲运行状态进入运行状态前对从站写一次。

图 4-11

点击图 4-11 所示对话框中的"添加"按钮弹出如图 4-12 所示的对话框,"index(hex)","Sub-Index(hex)" 为欲访问参数的索引,子索引;"长度(dec)"由欲访问参数的数据类型决定,以字节为单位,word 型参数的数据长度为 2;"数据(hex)"为欲写入参数的数据(数据类型为十六进数),低字节在前,高字节在后,字节之间用空格隔开,数据类型为双字时,低字数据在前,高字数据在后。

图 4-12

PDO 参数群: 在"节点配置"界面中,当在已配置的 PDO 中选择相应的 TxPDO 或 RxPDO,点击 "PDO 映射"选项,就会进入如图 4-13 所示的设备具体参数配置界面。在"已映射的参数"中,可以添加"EDS 文件提供的参数"中显示的参数。每个 PDO 中添加的参数的数据长度之和不能超过 8 个字节。配置完后,点击"确定"。在"节点配置"界面中,当在已配置的 PDO 中选择相应的 TxPDO 或 RxPDO,点击"属性"选项,可以进入如图 4-14 界面修改"COB-ID","传输类型"等信息。配置完后,点击"确定"。点击"Define PDO"选项,可以自定义 RxPDO 或 TxPDO。

本例中,使用默认的配置。最后,在"节点配置"界面中点击"确定"。

图 4-13

图 4-14

PDO COB-ID 设置规则如下表所示:

RxPDO 编号	COB-ID(HEX)	TxPDO 编号	COB-ID(HEX)
RxPDO1	200+从站站号	TxPDO1	180+从站站号
RxPDO2	300+从站站号	TxPDO2	280+从站站号
RxPDO3	400+从站站号	TxPDO3	380+从站站号
RxPDO4	500+从站站号	TxPDO4	480+从站站号

备注: RxPDO5~ RxPDO8, TxPDO5~ TxPDO8 的 COB-ID 可以使用网络中其他未使用从站 RxPDO1~ RxPDO4, TxPDO1~ TxPDO4 的 COB-ID, 但每个 PDO 的 COB-ID 不能相同。

PDO 传输类型说明如下表所示:

传输类型		传输类型说明	备注
0	RxPDO	主站每个同步周期传送一笔同步报文给从站。RxPDO数据发生变化后,RxPDO数据传送给从站,从站接收到的数据须等接收到下一个同步报文后生效。RxPDO数据无变化时,主站不传送RxPDO数据给从站。	同步非周期
	TxPDO	主站每个同步周期传送一笔同步报文给从站。TxPDO数据发生变化后,TxPDO数据立即传输给主站,主站接收到TxPDO数据后立即生效。TxPDO数据无变化时,从站不传送TxPDO数据给主站。	
1	RxPDO	主站每个同步周期传送一笔同步报文给从站。主站每个同步周期传送一次 RxPDO 数据,从站收到 RxPDO 的数据须等接收到下一个同步报文后生效。	同步周期
	TxPDO	主站每个同步周期传送一笔同步报文给从站。从站每收到 1 个同步报文后向主站传送一次 TxPDO 数据,主站接收到 TxPDO 数据后立即生效。	

20

传输类型		传输类型说明	备注
2	RxPDO	主站每个同步周期传送一笔同步报文给从站。主站每2个同步周期传送一次 RxPDO 数据,从站收到 RxPDO 的数据须等接收到下一个同步报文后生效。	同步周期
	TxPDO	主站每个同步周期传送一笔同步报文给从站。从站每收到2个同步报文后向主站传送一次TxPDO数据,主站接收到TxPDO数据后立即生效。	
3 ~ 240	RxPDO	以传输类型 1 和传输类型 2 类推。	同步周期
	TxPDO	以传输类型 1 和传输类型 2 类推。	
254	RxPDO	RxPDO 数据发生变化后,RxPDO 数据传输给从站, 从站接收到的数据立即生效。RxPDO 数据无变化时, 主站不传送 RxPDO 数据给从站。	异步
	TxPDO	当 Event timer 和 inhibit timer 都为 0 时,TxPDO 数据 发生变化后,TxPDO 数据传输给主站,主站接收到的 数据立即生效;TxPDO 数据无变化时,从站不传送 TxPDO 数据给主站。当 Event timer 和 inhibit timer 都 不为 0 时,从站每隔一个 Event timer 时间向主站传输一次 TxPDO 数据(TxPDO 数据传送一次后,inhibit timer 时间内不允许再传送 TxPDO 数据),且 TxPDO 数据变化时,TxPDO 数据立即传输给主站,主站接收到的数据立即生效。	
255	RxPDO	同传输类型 254。	异步
	TxPDO	同传输类型 254。	

● 配置节点列表

(1) 双击名称为 "DVPCOPM Master"图标,会弹出如图 4-15 所示的"节点列表配置"对话框。

图 4-15

(2) 本例中先选中站地址为 3 的 DVP-SS/SA/EH PLC 模块,点击按钮 ">",将从站 3 加入节点列表。此时选中节点列表中的从站 3,则可以在下方的输入输出映射表中看到从站 3 的 IO 数据对应到 SV 主机内的 D 寄存器地址。如图 4-16 所示。

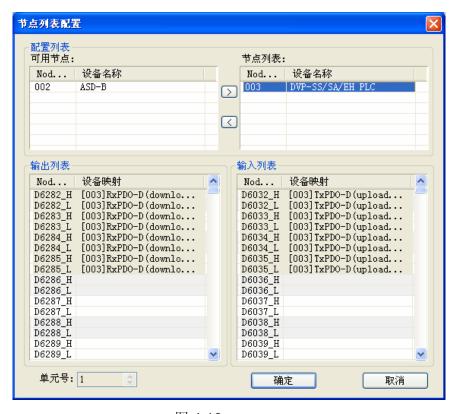


图 4-16

(3) 用同样的方法将从站 2 也加入节点列表,可以在下方的输入输出映射表中查看其 IO 数据对应到 SV 主机内的 D 寄存器地址。如图 4-17 所示。点击"确定"完成节点列表配置。

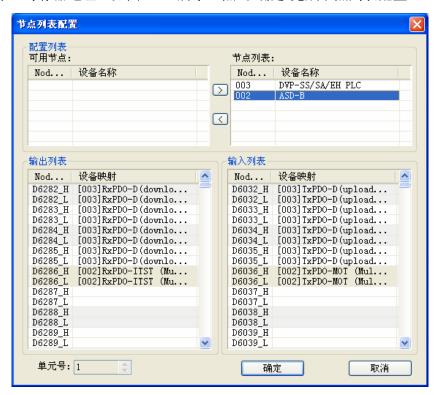


图 4-17

● 下载数据到主站模块

选择菜单"网络 ">> "下载",将配置数据下载到 DVPCOPM-SL 主站模块。此时如果 PLC 处于运行状 态,则会提示要先停止运行才可以下载,如图 4-18 所示。

然后点击"是"停止 PLC 运行并开始下载数据到主站模块。如图 4-19 所示。

下载完成后,会提示是否重新运行 PLC,点击"是"可以继续运行 PLC 程序,点击"否"则不运行 PLC 程序。如图 4-20 所示。

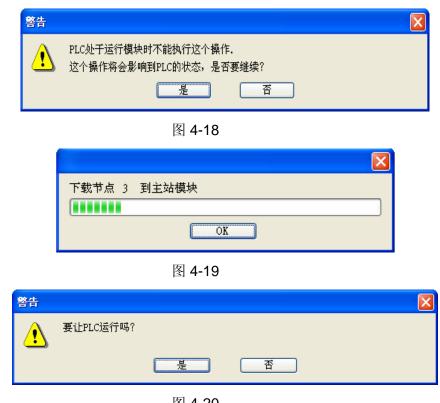


图 4-20

4.4 保存组态数据

选择菜单文件 -> 保存,可以保存当前的组态数据。

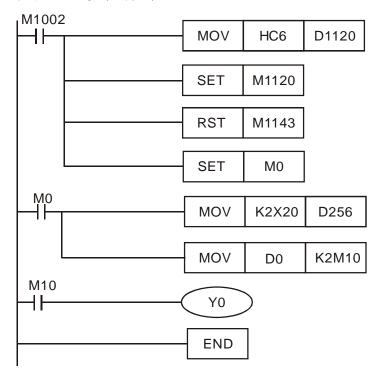
4.5 CANopen 网络控制

本节将介绍如何编写 WPL 程序实现 CANopen 网络的控制要求。

● 控制要求:

- 1. 当闭合从站 3 上的开关 SW0 时,从站 2 伺服驱动器激活运行;
- 2. 当断开从站 3 上的开关 SW0 时, 从站 2 伺服驱动器停止运行;
- 3. 当切换从站 3 上的开关 SW1、SW2 状态,可以改变从站 2 伺服驱动器的运行速度;
- 4. 当伺服驱动器处于运行状态时, 从站 2 上的信号灯亮;
- 5. 当伺服驱动器处于停止状态时,从站 2 上的信号灯灭。

● PLC 程序


主站 SV 主机中的程序:

```
M1002
SET M0
MO
MOV D6032 D6286
MOV D6036 D6282
END
```

● 程序说明:

- 1. 程序第二行表示将 SA 主机 D256(映射在 SV 主机的 D6032)的内容传送到伺服驱动器的控制字 (映射在 SV 主机的 D6286) 中。
- 2. 程序第三行表示将伺服驱动器的输出状态(映射在 SV 主机的 D6036)传送到 SA 主机 D0(映射在 SV 主机的 D6282)中。

从站 SA 主机中的程序:

● 程序说明:

- 1. 程序前三行设定 SA 主机与 IFD9503 的通讯格式: 115200bps, 7E1-ASCII, 通讯口选择 COM2。
- 2. 当 M0 ON 后,将 X20-X28(DVP-08ST)的输入状态传送到 D256,同时将 D0 的数据按 bit0~bit15 相应地传送到 M10~M25。
- 3. 当 D0=1 时, M10 ON, 这时 SA 主机的 Y0 有输出。

5 梯形图发送 SDO、NMT 及读取 Emergency 信息

5.1 实现原理

通过 WPL 程序发送 SDO 的原理如图 5-1 所示。

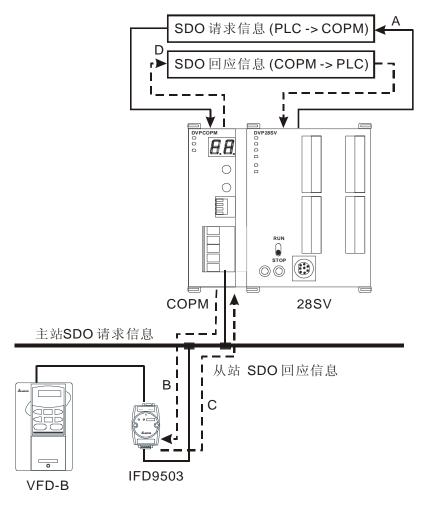


图 5-1

- A: PLC 传送数据信息给 COPM 主站
- B: COPM 主站将数据信息传送给目标设备
- C: 目标设备处理请求信息并将回应信息传送给 COPM 主站
- D: PLC 接收回应信息 SDO, NMT 和 Emergency 数据结构

5.2 SDO 请求信息的数据结构

SDO, NMT 和 Emergency 可通过编辑请求信息映射区来实现。以靠近 PLC 主机左侧的第一台 DVPCOPM-SL 主站模块为例,请求信息映射区和回应信息映射区与 PLC 元件的对应关系如下表所示。

PLC 元件	映射区域	映射长度
D6000~D6031	SDO 回应信息及 Emergency 回应信息	64 字节
D6250~D6281	SDO 请求信息,NMT 服务信息及 Emergency 请求信息	64 字节

SDO 请求信息的数据格式如下表:

PLC 元件		请求信						息											
PLO 元件		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
D6250					请习	ķ IE)						命	令码	<u> </u>				
D6251	信息头	保留数据长度																	
D6252		类型								节点地址									
D6253			主索引高字节									主索引低字节							
D6254		保留 子索引						;											
D6255	信息数据	数据 1					数据 0												
D6256		数据 3 数据 2																	
D6257 ~ D6281		保留																	

- 命令码: 固定为 01(Hex)。
- 请求 ID: 每发送一笔 SDO 请求信息,必须为这笔信息分配一个请求 ID。CANopen 主站通过"请求 ID 号"识别每一笔请求信息,当完成一次通讯,欲进行下一次通讯时,必须改变此 ID 号。请求 ID 的取值范围为 00(Hex)~FF(Hex)。
- 数据长度:信息数据的数据长度,最大值为8。单位:字节。
- 节点地址: CANopen 网络中目标设备的节点地址。
- 类型:在 SDO 请求信息中 01 (Hex)表示 SDO 读取数据服务,02 (Hex)表示 SDO 写入数据服务。而在 SDO 回应信息中 43(Hex)表示读 4 个字节数据,4B(Hex)表示读 2 个字节数据,4F(Hex)表示读 1 个字节数据,60(Hex)表示写 1/2/4 个字节数据,80(Hex)表示终止 SDO 命令。例如,在 SDO 请求信息中,若类型为 02 (Hex),当写入数据成功时,在 SDO 回应信息中的类型就为 60(Hex)。

SDO 响应信息的数据格式如下表:

PLC 元件				ì	青求	信息	ļ									
PLC 九件		15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
D6000		请	求 ID						状	态码	马					
D6001	信息头	保	留						数	据七	く度					
D6002		类型							节点地址							
D6003		主	索引高	字节	j				主	索引	川低	字节	j			
D6004		保	留						子	索引						
D6005	信息数据	数	居 1						数	据()					
D6006		数据 3 数据 2														
D6007 ~ D6031		保	智													

● 状态码:

状态代码	说明						
0	无数据传输请求						
1	SDO 信息传送成功						

状态代码	说明
2	SDO 信息正在传送处理中
3	Error – SDO 传送信息通讯超时
4	Error – 命令码不合法
5	Error – 传送数据长度不合法
6	Error – 回应数据长度不合法
7	Error – 欲传送之设备忙碌中
8	Error – 类型码不合法
9	Error - 节点地址错误
0A	错误信息(参考 SDO 回应信息中的错误代码)
0B~FF	保留

- 请求 ID: 正常情况下,与请求信息中的请求 ID 相同。
- 数据长度:信息数据的数据长度,最大值为20。单位:字节
- 节点地址: CANopen 网络中目标设备的节点地址。
- 类型: SDO 回应信息中 43(Hex)表示读 4 个字节数据,4B(Hex)表示读 2 个字节数据,4F(Hex)表示读 1 个字节数据,60(Hex)表示写 1/2/4 个字节数据,80(Hex)表示终止 SDO 命令。例如,在 SDO 请求信息中,若类型为 02 (Hex),当写入数据成功时,在 SDO 回应信息中的类型就为 60(Hex)。

5.3 NMT 服务信息的数据结构

用户将欲传送的 NMT 请求信息传送到 D6250 ~ D6281, 从站不回应信息。

PLC 元件		请求信息															
PLC元件		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D6250			请求 ID 命令码														
D6251	信息头			,	保留					数:	据长	度(固	固定)	力 04	l(He	x))	
D6252		类	型((固定	ミ为	03(F	lex)	(节	点地	址			
D6253	信息数据	保留 NMT 服务码															
D6254	日心奴1/6	保留 节点地址															

- 命令码:固定为 01(Hex)。
- 请求 ID: 每发送一笔 NMT 请求信息,必须为这笔信息分配一个请求 ID。CANopen 主站通过"请求 ID 号"识别每一笔请求信息,当完成一次通讯,欲进行下一次通讯时,必须改变此 ID 号。请求 ID 的取值范围为 00(Hex)~FF(Hex)。
- 节点地址: CANopen 网络中目标设备的节点地址。
- NMT 服务码:

01(Hex): 启动远端节点。02(Hex): 停止远端节点。80(Hex): 进入预运行状态。81(Hex): 应用复归。82(Hex): 通信复归。

例如,需要停止 CANopen 网络中站号为 03 的设备时,NMT 服务码为 02(Hex),节点地址为 03。

5.4 Emergency 请求信息的数据结构

Emergency 请求信息的数据格式如下表:

PLC 元件	请求信息																
PLG /L/IT		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D6250		请求 ID 命令码															
D6251	信息头				保	留					数	据七	€度((固定	三为	0)	
D6252		类型(固定为 04(Hex)) 节点地址															
D6253~ D6281	信息数据	保留															

Emergency 回应信息的数据格式如下表:

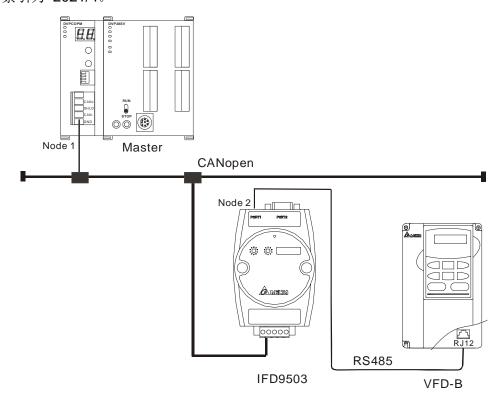
PLC 元件						回应	信息	1									
PLU几件		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D6000					请求	t ID							状态	际码			
D6001	信息头				保	留				数	据长	度	(固)	定为	2A	(He	x))
D6002		3	类型	(固	定	り04	l(He	(x				7	克苛	地址	Ŀ		
D6003					总氧	ミ数						1	保存	笔数	Į		
D6004		数据 1								数据 0							
D6005		数据 3							数据 2								
D6006		数据 5							数据 4								
D6007	信息数据	数据 7							数据 6								
D6008 ~ D6011	旧心奴加	Emergency2															
D6012 ~ D6015		Emergency3															
D6016 ~ D6019								Er	nerg	genc	y4						
D6020~ D6023		Emergency5															
D6024~ D6031		保留															

- 命令码: 固定为 01(Hex)。
- 请求 ID: 每发送一笔 Emergency 信息,必须为这笔信息分配一个请求 ID。CANopen 主站通过" 请求 ID 号"识别每一笔请求信息,当完成一次通讯,欲进行下一次通讯时,必须改变此 ID 号。请求 ID 的取值范围为 00(Hex)~FF(Hex)。
- 节点地址: CANopen 网络中目标设备的节点地址。
- 总笔数: CANopen 主站接收到的 Emergency 信息的总笔数。
- 保存笔数: CANopen 主站接收到的最新的 Emergency 信息的笔数 (每个从站不超过 5 笔)。

注意事项:

- CANopen 主站在同一时间内只能对同一台设备发一笔 SDO, NMT 或 Emergency 请求信息。
- 使用 WPL 程序发送 SDO, NMT 或 Emergency 请求信息时,建议首先对请求信息映射区、回应信息映射区清零。

28


5.5 应用范例

本小节将以范例的形式说明如何编写 WPL 程序发送 SDO, NMT 或读取 Emergency 请求信息。

■ 应用范例(一)

● 控制要求:

当 M0=ON 时,通过 SDO 读取交流电机驱动器实际输出频率,交流电机驱动器实际输出频率对应的索引/子索引为 2021/4。

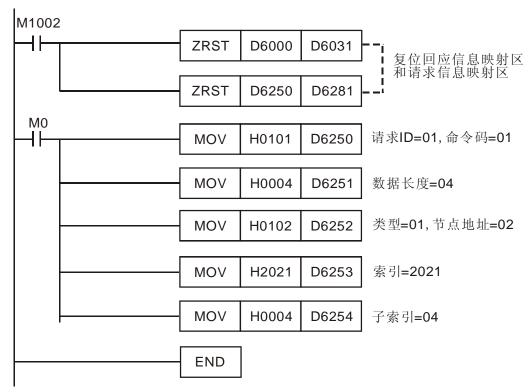
DVPCOPM-SL 必要设置:

参数	设置值	说明
节点地址	01	设置 DVPCOPM-SL 的节点地址为 01
通讯速率	1 Mbps	设置 DVPCOPM-SL 与总线的通讯速率为 1 Mbps

IFD9503 必要设置:

参	参数	设置值	说明
节点	点地址	02	设置 IFD9503 模块的节点地址为 02
通讯	凡速率	1 Mbps	设置 IFD9503 模块与总线的通讯速率为 1 Mbps

VFD-B 交流电机驱动器参数必要设置:

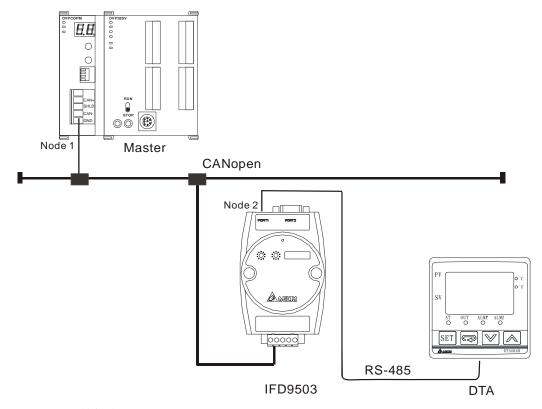

参数	设置值	说明			
02-00	04 主频率由 RS-485 通讯界面操作				
02-01	03	运转指令由通讯界面操作,键盘操作有效			
09-00	01	VFD-B 系列交流电机驱动器的通讯地址 01			
09-01	03	通讯传送速度 Baud rate 38400			
09-04	03	MODBUS RTU 模式,资料格式<8,N,2>			

元件说明:

PLC 元件		山家	说明						
PLC 7	G1 11	内容	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0					
	D6250	0101(Hex)	请求 ID = 01 (Hex)	命令码 = 01 (Hex)					
0D0 /#-#	D6251	0004(Hex)	保留	数据长度 = 04 (Hex)					
SDO 请求 信息映射区	D6252	0102(Hex)	类型 = 01 (Hex)	节点地址 = 02 (Hex)					
国心的(21)区	D6253	2021(Hex)	索引高字节 = 20 (Hex)	索引低字节 = 21 (Hex)					
	D6254	0004(Hex)	保留	子索引= 04 (Hex)					
	D6000	0101(Hex)	请求 ID = 01(Hex)	状态代码 = 01 (Hex)					
	D6001	0006(Hex)	保留	数据长度 = 06 (Hex)					
SDO 回应	D6002	4B02(Hex)	类型= 4B (Hex)	节点地址 = 02 (Hex)					
信息映射区	D6003	2021(Hex)	主索引高字节= 20 (Hex)	索引低字节 = 21 (Hex)					
	D6004	0004(Hex)	保留	子索引= 04 (Hex)					
	D6005	0100 (Hex)	数据 1= 01 (Hex)	数据 0= 00 (Hex)					

D6005 中的值为 0100 (Hex),即交流电机驱动器的实际输出频率为 2.56 HZ。

● PLC 程序


● 程序说明:

- 1. 程序开始首先对 SDO 请求信息映射区和 SDO 回应信息映射区清零。
- 2. 当 M0=ON 时, CANopen 主站会发送 SDO 请求信息,读取目标设备(节点地址为 02)索引为 2021,子索引为 4 的内容;如果通讯成功,从站会返回回应信息。
- 3. 当 M0=ON 时,CANopen 主站仅发送一次请求信息。若再次发送请求信息,需要改变请求 ID 的内容值。
- 4. 读取成功,目标设备返回的数据存放在 D6000~D6005。

■ 应用范例(二)

● 控制要求:

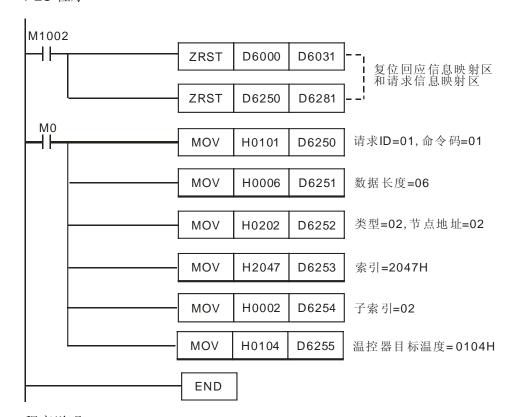
当 M0=ON 时,通过 SDO 设置温控器目标温度为 26.0 ℃,温控器目标温度对应的索引/子索引为设 2047/2。

DVPCOPM-SL 必要设置:

参数	设置值	说明
节点地址	01	设置 DVPCOPM-SL 的节点地址为 01
通讯速率	1 Mbps	设置 DVPCOPM-SL 与总线的通讯速率为 1M bps

IFD9503 必要设置:

参数	C .	设置值	说明
节点地	址	02	设置 IFD9503 模块的节点地址为 02
通讯速	率	1 Mbps	设置 IFD9503 模块与总线的通讯速率为 1 Mbps


DTA 温控器参数必要设置:

参数	设置值	说明
CoSH	On	C WE: 通讯写入功能禁止/允许
C-SL	ASCII	C-SL: ASCII、RTU 通讯格式选择
[-no	1	C NO: 通讯地址设置
6PS	38400	BPS: 通讯传输速率设置
LEn	7	LENGTH: 通讯位长度值设置
Pres	E	PARITY: 通讯奇偶校验位设置
StoP	1	STOP BIT: 通讯停止位设置
EPUn	$^{\circ}$	UNIT: 选择显示温度单位℃或者℉

元件说明:

PLC 元件		内容	说明																
PLC)	PLC 元件		15	14	13	12	11	10	9	8	7	6	5	4	3		2	1	0
	D6250	0101(Hex)	请习	於 ID	= 0	1 (H	lex)				命	令码	= 0	1 (H	lex	()			
	D6251	0006(Hex)	保督	習							数技	居长	度 =	06	(H	ex)			
SDO 请求	D6252	0202(Hex)	类型	틴 =	02 ((He	()				节月	点地:	址 =	02	(H	ex)			
信息映射区	D6253	2047(Hex)	索引高字节 = 20 (Hex)					索引低字节 = 47 (Hex)											
	D6254	0002(Hex)	保留					子索引= 02 (Hex)											
	D6255	0104 (Hex)	数据 1= 01 (Hex)					数据 0= 04 (Hex)											
	D6000	0101(Hex)	请习	於 ID	= 0	1(H	ex)				状态代码 = 01 (Hex)								
CDO FIRE	D6001	0004(Hex)	保督	習							数据长度 = 04 (Hex)								
SDO 回应 信息映射区	D6002	6002(Hex)	类型	틷= 6	60 (H	lex)					节点地址 = 02 (Hex)								
田邓松村区	D6003	2047(Hex)	主索引高字节= 20 (Hex)					索引低字节 = 47 (Hex)											
	D6004	0002(Hex)	保留						子索引= 02 (Hex)				•						

● PLC 程序

● 程序说明:

- 1. 程序开始首先对 SDO 请求信息映射区和 SDO 回应信息映射区清零。
- 2. 当 M1=ON 时, CANopen 主站会发送 SDO 请求信息,对目标设备(节点地址为 02)索引为 2047,子索引为 2 的写入内容 0104 (Hex), 0104 (Hex)的十进制为 260;如果通讯成功,从站会返回回应信息。
- 3. 当 M0=ON 时,CANopen 主站仅发送一次请求信息。若再次发送请求信息,需要改变请求 ID 的内容值。
- 4. 写入成功,目标设备返回的数据存放在 D6000~D6004。

6 网络节点状态显示

通过梯形图发送 SDO 读取 5002/1(索引/子索引)的值,可以读取 CANopen 网络中所有从站的状态。通过梯形图发送 SDO 读取 5003/1(索引/子索引)的值,可以读取 CANopen 网络中主站的状态。通过梯形图发送 SDO 读取 5004/1(索引/子索引)的值,可以读取 CANopen 网络的网络状态信息。

6.1 CANopen 网络中从站状态

使用者可以通过发送 SDO 读取 H'5002>>H'01 的内容值,获取 CANopen 网络中从站的状态信息。

索引	子索引	对象名称	数据类型	访问权限	默认值
H'5002	H'00	Entry	无符号 16 位	RO	
113002	H'01	节点 1~节点 127 状态字	无符号 128 位	RO	

索引 H"5002>>子索引 H'01 和网络节点的对应关系如下表所示。

H'5002>>H'01	对应网络节点							
113002>>1101	b15	b14	b13		b1	b0		
Word 0	节点 15	节点 14	节点 13		节点1	保留		
Word 1	节点 31	节点 30	节点 29		节点 17	节点 16		
Word 2	节点 47	节点 46	节点 45		节点 33	节点 32		
Word 3	节点 63	节点 62	节点 61		节点 49	节点 48		
Word 4	节点 79	节点 78	节点 77		节点 65	节点 64		
Word 5	节点 95	节点 94	节点 93		节点 81	08 点带		
Word 6	节点 111	节点 110	节点 109		节点 97	节点 96		
Word 7	节点 127	节点 126	节点 125		节点 113	节点 112		

当主站模块节点列表中的节点正常时,相应的位为 OFF 状态;主站模块节点列表中的节点发生异常(包含初始化失败及其它异常导致从站掉线)时,相应的位为 ON 状态。

6.2 CANopen 网络中主站状态

使用者通过发送 SDO 读取 H'5003>>H'01 的内容值,获取主站模块的状态信息。当主站模块正常工作时,H'5003>>H'01 的内容值为 0;当主站模块发生错误时,H'5003>>H'01 的内容值为相应的错误代码。

索引	子索引	对象名称	数据类型	访问权限	默认值
H'5003	H'00	Entry	无符号 16 位	RO	
П 3003	H'01	主站模块的状态	无符号 16 位	RO	

H'5003>>H'01的内容值代表含义见下表。

内容值	代表含义	处理方法
F1	CANopenBuilder 软件节点列表没有添加 从站	将从站添加至节点列表后,重新下载配置到 DVPCOPM-SL
F2	正在下载配置到 DVPCOPM-SL	等待配置下载完成
F3	DVPCOPM-SL 处于错误状态	重新下载参数配置,如果错误依然存在,请更换一台新的 DVPCOPM-SL

内容值	代表含义	处理方法
F4	检测到总线脱离(Bus-off)	检查 CANopen 网络中线缆接线正确,并确认网络 上所有的节点都有相同的波特率,然后将 DVPCOPM-SL 重新上电
F5	DVPCOPM-SL 节点地址设定错误	设置 DVPCOPM-SL 的节点地址在 1 ~ 127 之间
F9	低电压检测错误	检查并确认 DVPCOPM-SL 的工作电源正常
FA	DVPCOPM-SL 韧体内部处于错误状态	重新上电 DVPCOPM-SL
FB	DVPCOPM-SL 的发送寄存区满	检查 CANopen 网络中线缆连接正常,然后将 DVPCOPM-SL 重新上电
FC	DVPCOPM-SL 的接收寄存区满	检查 CANopen 网络中线缆连接正常,然后将 DVPCOPM-SL 重新上电
0	主站正常	无需处理

6.3 CANopen 网络状态

使用者通过编写梯形图发送 SDO 读取 H'5004>>H'01 的内容值,获取 CANopen 网络的状态信息。当 CANopen 网络的所有节点均正常工作时,H'5004>>H'01 的内容值为 0;当 CANopen 网络中任何一个节点发生异常/初始化失败时,H'5004>>H'01 的内容值为 1。

索引	子索引	对象名称	数据类型	访问权限	默认值
H'5004	H'00	Entry	无符号 16 位	RO	
П 3004	H'01	CANopen 网络的状态	无符号 16 位	RO	

6.4 SDO 请求信息的数据结构

此处 SDO 请求信息结构只针对 5002/1(索引/子索引),5003/1(索引/子索引),5004/1(索引/子索引)。SDO 可通过编辑请求信息映射区来实现,以靠近 PLC 主机左侧的第一台 DVPCOPM-SL 主站模块为例,请求信息映射区和回应信息映射区与 PLC 元件的对应关系如下表所示。

PLC 元件	映射区域	映射长度
D6000~D6031	SDO 回应信息区	64 字节
D6250~D6281	SDO 请求信息区	64 字节

SDO 请求信息的数据格式如下表:

PLC 元件	请求信息																
PLC几件		15	14	13	12	11	1 10	9	8	7	6	5	4	3	2 1	ı	0
D6250					请习	犮	ID			命令码							
D6251	信息头				保	留	1			数据长度							
D6252		类型					节点地址										
D6253		主索引高字节					主索引低字节										
D6254		保留							子索引								
D6255	信息数据		数据 1					数据 0									
D6256		数据 3					数据 2										
D6257 ~ D6281		保留															

- 命令码: 固定为 01(Hex)。
- 请求 ID: 每发送一笔 SDO 请求信息,必须为这笔信息分配一个请求 ID。CANopen 主站通过"请求 ID 号"识别每一笔请求信息,当完成一次通讯,欲进行下一次通讯时,必须改变此 ID 号。请求 ID 的取值范围为 00(Hex) ~ FF(Hex)。
- 数据长度:信息数据的数据长度,固定为4,单位:字节。
- 节点地址: CANopen 网络中主站的节点地址。
- 类型:在 SDO 请求信息中固定为 1, 表示 SDO 读取数据服务。

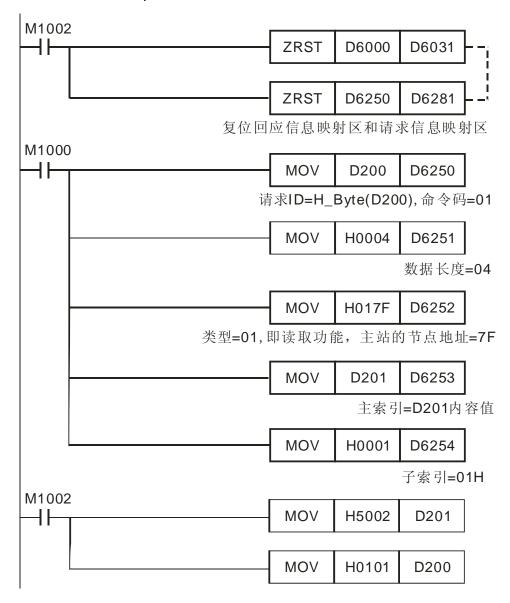
SDO 响应信息的数据格式如下表:

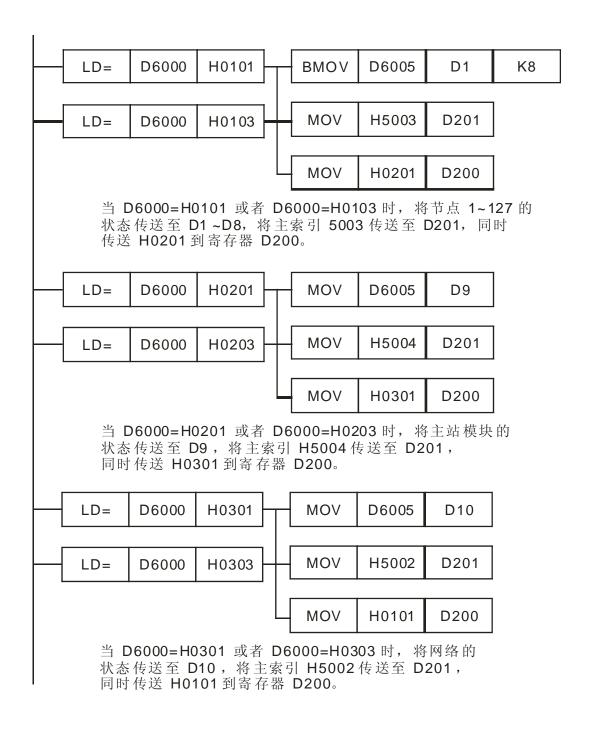
PLC 元件	请求信息																
PLC元件		15	14 1	3	12	11	10	9	8	7	6	5	4	3	2	1	0
D6000					回应	ž IC)						状	态码	1		
D6001	信息头				保	留							数捷	长月	叓		
D6002					类	型							节点	地均	Ŀ		
D6003				主刻	索引	高气	字节					主	索弓	低=	字节		
D6004					保	留				子索引							
D6005	数			数扫	坟据 1				数据 0								
D6006		数据 3			数据 2												
D6007					数扫	居 5			数据 4								
D6008	信息数据				数扫	居 7				数据 6							
D6009					数扫	居 9		数据 8									
D6010			数据 11					数技	居 10)							
D6011	数据 13 数据 12					数据 13			2								
D6012		数据 15						数技	居 14	1							
D6013 ~ D6031			保留														

● 状态码:

状态代码	说明
0	无数据传输请求
1	SDO 信息传送成功
2	SDO 信息正在传送处理中
3	Error – SDO 传送信息通讯超时
4	Error – 命令码不合法
5	Error – 传送数据长度不合法
6	Error – 回应数据长度不合法
7	Error – 欲传送之设备忙碌中
8	Error – 类型码不合法
9	Error – 节点地址错误
0A	错误信息(参考 SDO 回应信息中的错误代码)
0B~FF	保留

CANopen 通讯模块 DVPCOPM-SL


- 回应 ID: 正常情况下,与请求信息中的请求 ID 相同;异常情况下,回应 ID 为 0。
- 数据长度:信息数据的数据长度,最大值为32,单位:字节
- 节点地址: CANopen 网络中主站的节点地址。
- 类型: SDO 回应信息中 43(Hex)表示读 4 个字节的数据, 4B(Hex)表示读 2 个字节数据, 4F(Hex)表示读 1 个字节数据, 42(Hex)表示读取数据内容大于 4 个字节。


6.5 应用范例

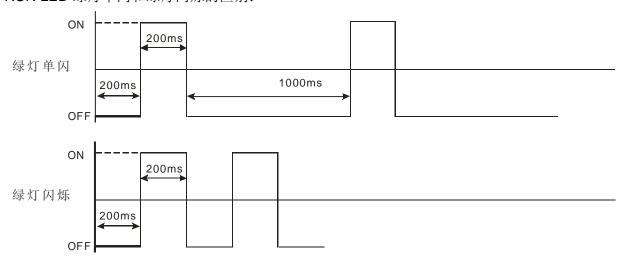
【控制要求】

编写梯形图实现 CANopen 网络监控功能,具体如下:

- 实时监控主站模块节点列表中从站的状态;
- 实时监控主站模块的状态;
- 实时监控 CANopen 网络的状态。

7 LED 灯指示说明及故障排除

DVPCOPM-SL 模块有三个 LED 指示灯和一个数字显示器。POWER LED 用来显示 DVPCOPM-SL 的工作电源是否正常; RUN LED 与 ERR LED 用以显示当前 DVPCOPM-SL 模块的工作状态; 数字显示器用来显示 DVPCOPM-SL 模块的节点地址、以及从站的错误讯息。

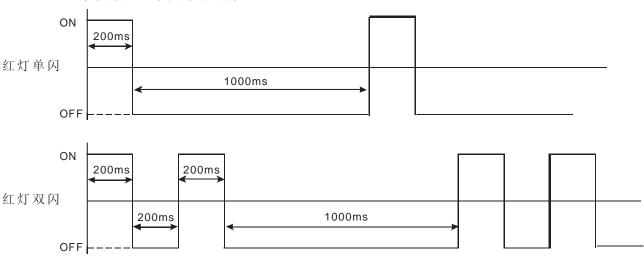

7.1 POWER 灯显示说明

LED 灯状态	显示说明	处理方法					
灯灭	DVPCOPM-SL 供电电源不正常	检查 DVPCOPM-SL 供电电源是否正常					
绿灯常亮	DVPCOPM-SL 供电电源正常	无需处理					

7.2 RUN 灯显示说明

LED 灯状态	显示说明	处理方法
绿灯单闪	DVPCOPM-SL 处于停止状态	上位机正在下载网络配置,等待下载完成。
绿灯闪烁	DVPCOPM-SL 处于预运行状态	 检查 CANopen 网络中总线线缆接线正确。 检查主站和其它从站的波特率相同。 检查网络配置的从站实际连接至网络中。 检查是否有从站掉线。
绿灯常亮	DVPCOPM-SL 处于正常状态	无需处理

RUN LED 绿灯单闪和绿灯闪烁的区别:



7.3 ERR 灯显示说明

LED 灯状态	显示说明	处理方法
灯灭	正常	无需动作
红灯双闪	有从站掉线	 检查 CANopen 总线连接线缆为标准线缆 检查 CANopen 总线两端有接终端电阻

LED 灯状态	显示说明	处理方法
红灯单闪	总线错误超出警戒水平	 检查 CANopen 总线连接线缆为标准线缆 检查 CANopen 总线两端有接终端电阻 检查 CANopen 总线线缆周围是否干扰过大
红灯常亮	总线脱离(Bus-off)	1. 检查 CANopen 网络中总线线缆接线正确 2. 检查 DVPCOPM-SL 和其它从站的波特率相同

ERR LED 红灯单闪和红灯双闪的区别:

7.4 数字显示器显示说明

● DVPCOPM-SL 为主站模式

代码	显示说明	处理方法		
1~ 7F	正常工作时,显示 DVPCOPM-SL 的节点 地址	无需处理		
F1	CANopenBuilder 软件节点列表没有添加 从站	将从站添加至节点列表后,重新下载配置到 DVPCOPM-SL		
F2	正在下载配置到 DVPCOPM-SL	等待配置下载完成		
F3	DVPCOPM-SL 处于错误状态	重新下载参数配置,如果错误依然存在,请更换一台新的 DVPCOPM-SL		
F4	检测到总线脱离(Bus-off)	检查 CANopen 网络中总线线缆接线正确,并确 认网络上所有的节点都有相同的波特率,然后将 DVPCOPM-SL 重新上电		
F5	DVPCOPM-SL 节点地址设定错误	设置 DVPCOPM-SL 的节点地址在 1~127 之间		
F6	内部错误: 工厂制造流程出错			
F7	内部错误: GPIO 检测出错	□重新上电,如果错误依然存在,请更换一台新的 □DVPCOPM-SL		
F8	内部错误: 内部存储器检测出错	DVI GGI III GE		
F9	低电压检测错误	检查并确认 DVPCOPM-SL 的工作电源正常		
FA	DVPCOPM-SL 韧体内部处于错误状态	重新上电 DVPCOPM-SL		
FB	DVPCOPM-SL 的发送寄存区满	检查 CANopen 网络中总线线缆连接正常,然后 将 DVPCOPM-SL 重新上电		
FC	DVPCOPM-SL 的接收寄存区满	检查 CANopen 网络中总线线缆连接正常,然后 将 DVPCOPM-SL 重新上电		
E0	DVPCOPM-SL 接收到从站发送的紧急信息	通过 PLC 主机或 Delta CANopenBuilder 软件读取相关信息		

代码	显示说明	处理方法
E1	从站返回的 PDO 数据长度与节点列表中 设定的 PDO 数据长度不符	重新设定从站的 PDO 数据长度,设定完成后下载 到 DVPCOPM-SL
E2	未接收到从站 PDO	检查并确认设定正确
E3	自动 SDO 下载失败	检查并确认自动 SDO 正确
E4	PDO 参数设定失败	确认 PDO 参数设定合法
E5	关键参数设定有误	确认所连接的从站与所设定的从站一致
E6	网络中不存在此从站	确认从站工作电源正常,确认网络连接正常
E7	从站错误控制超时	州
E8	主从站站号重复	重新设置主站或从站站号,确认重新设置后的站 号不重复

● DVPCOPM-SL 为从站模式

代码	显示说明	处理方法
1~ 7F	正常工作时,显示 DVPCOPM-SL 的节点 地址	无需处理
A0	DVPCOPM-SL 处于参数初始化状态	等待参数初始化完毕
A1	DVPCOPM-SL 处于预运行状态	检查 CANopen 网络中总线线缆连接正常
А3	正在下载配置到 DVPCOPM-SL	等待配置下载完毕
В0	心跳报文逾时	检查 CANopen 网络中总线线缆连接正常
B1	从站返回的 PDO 长度与与节点列表中设定的 PDO 数据长度不符	重新设定从站的 PDO 数据长度,设定完成后下载 到 DVPCOPM-SL
F4	检测到总线脱离(Bus-off)	检查 CANopen 网络中总线线缆接线正确,并确 认网络上所有的节点都有相同的波特率,然后将 DVPCOPM-SL 重新上电
FB	DVPCOPM-SL 的发送寄存区满	检查 CANopen 网络中总线线缆连接正常,然后 将 DVPCOPM-SL 重新上电
FC	DVPCOPM-SL 的接收寄存区满	检查 CANopen 网络中总线线缆连接正常,然后 将 DVPCOPM-SL 重新上电

8 DVPCOPM-SL 作为 CANopen 从站时的索引/子索引说明

DVPCOPM-SL 做 CANopen 从站时,在 PLC 主机左侧不同位置,其索引/子索引与 PLC 主机寄存器的对应关系如下表所示,在 PLC 主机左侧第一台的位置为 1,第二台的位置为 2,其它位置以此类推。

对应关系 位置	索引	子索引范围	输入/输出映射区	对应 PLC 主机的寄存器
1	H'2000	H'01~ H'20	输出映射区	D6282~D6313
ľ	H'2001	H'01~ H'20	输入映射区	D6032~D6063
2	H'2000	H'01~ H'20	输出映射区	D6782~D6813
2	H'2001	H'01~ H'20	输入映射区	D6532~D6563
3	H'2000	H'01~ H'20	输出映射区	D7282~D7313
3	H'2001	H'01~ H'20	输入映射区	D7032~D7063
4	H'2000	H'01~ H'20	输出映射区	D7782~D7813
4	H'2001	H'01~ H'20	输入映射区	D7532~D7563
5	H'2000	H'01~ H'20	输出映射区	D8282~D8313
5	H'2001	H'01~ H'20	输入映射区	D8032~D8063
6	H'2000	H'01~ H'20	输出映射区	D8782~D8813
0	H'2001	H'01~ H'20	输入映射区	D8532~D8563
7	H'2000	H'01~ H'20	输出映射区	D9282~D9313
/	H'2001	H'01~ H'20	输入映射区	D9032~D9063
8	H'2000	H'01~ H'20	输出映射区	D9782~D9813
O	H'2001	H'01~ H'20	输入映射区	D9532~D9563

DVPCOPM-SL 作为 CANopen 从站时,以 PLC 主机左侧第一台为例,其索引/子索引的属性及对应 PLC 主机的寄存器如下表所示。

■ 输出映射区

索引	子索引	对象名称	数据类型	访问权限	对应 PLC 主机的寄存器 (输出映射区)
H'2000	H'01	Data_in[0]	有符号 16 位	只写	D6282
	H'02	Data_in [1]	有符号 16 位	只写	D6283
	H'03	Data_in [2]	有符号 16 位	只写	D6284
	H'04	Data_in [3]	有符号 16 位	只写	D6285
	H'05	Data_in [4]	有符号 16 位	只写	D6286
	H'06	Data_in [5]	有符号 16 位	只写	D6287
	H'07	Data_in [6]	有符号 16 位	只写	D6288
	H'08	Data_in [7]	有符号 16 位	只写	D6289
	H'09	Data_in [8]	有符号 16 位	只写	D6290
	H'0A	Data_in [9]	有符号 16 位	只写	D6291
	H'0B	Data_in [10]	有符号 16 位	只写	D6292
	H'0C	Data_in [11]	有符号 16 位	只写	D6293
	H'0D	Data_in [12]	有符号 16 位	只写	D6294

索引	子索引	对象名称	数据类型	访问权限	对应 PLC 主机的寄存器 (输出映射区)
H'2000	H'0E	Data_in [13]	有符号 16 位	只写	D6295
	H'0F	Data_in [14]	有符号 16 位	只写	D6296
	H'10	Data_in [15]	有符号 16 位	只写	D6297
	H'11	Data_in [16]	有符号 16 位	只写	D6298
	H'12	Data_in [17]	有符号 16 位	只写	D6299
	H'13	Data_in [18]	有符号 16 位	只写	D6300
	H'14	Data_in [19]	有符号 16 位	只写	D6301
	H'15	Data_in [20]	有符号 16 位	只写	D6302
	H'16	Data_in [21]	有符号 16 位	只写	D6303
	H'17	Data_in [22]	有符号 16 位	只写	D6304
	H'18	Data_in [23]	有符号 16 位	只写	D6305
	H'19	Data_in [24]	有符号 16 位	只写	D6306
	H'1A	Data_in [25]	有符号 16 位	只写	D6307
	H'1B	Data_in [26]	有符号 16 位	只写	D6308
	H'1C	Data_in [27]	有符号 16 位	只写	D6309
	H'1D	Data_in [28]	有符号 16 位	只写	D6310
	H'1E	Data_in [29]	有符号 16 位	只写	D6311
	H'1F	Data_in [30]	有符号 16 位	只写	D6312
	H'20	Data_in [31]	有符号 16 位	只写	D6313

■ 输入映射区

索引	子索引	对象名称	数据类型	访问权限	对应 PLC 主机的寄存器 (输入映射区)
H'2001	H'01	Data_out[0]	有符号 16 位	只读	D6032
	H'02	Data_out[1]	有符号 16 位	只读	D6033
	H'03	Data_out[2]	有符号 16 位	只读	D6034
	H'04	Data_out [3]	有符号 16 位	只读	D6035
	H'05	Data_out [4]	有符号 16 位	只读	D6036
	H'06	Data_out [5]	有符号 16 位	只读	D6037
	H'07	Data_out [6]	有符号 16 位	只读	D6038
	H'08	Data_out [7]	有符号 16 位	只读	D6039
	H'09	Data_out [8]	有符号 16 位	只读	D6040
	H'0A	Data_out [9]	有符号 16 位	只读	D6041
	H'0B	Data_out [10]	有符号 16 位	只读	D6042
	H'0C	Data_out [11]	有符号 16 位	只读	D6043
	H'0D	Data_out [12]	有符号 16 位	只读	D6044
	H'0E	Data[_out 13]	有符号 16 位	只读	D6045
	H'0F	Data_out [14]	有符号 16 位	只读	D6046
	H'10	Data_out [15]	有符号 16 位	只读	D6047
	H'11	Data_out [16]	有符号 16 位	只读	D6048

索引	子索引	对象名称	数据类型	访问权限	对应 PLC 主机的寄存器 (输入映射区)
H'2001	H'12	Data_out [17]	有符号 16 位	只读	D6049
	H'13	Data_out [18]	有符号 16 位	只读	D6050
	H'14	Data_out [19]	有符号 16 位	只读	D6051
	H'15	Data_out [20]	有符号 16 位	只读	D6052
	H'16	Data_out [21]	有符号 16 位	只读	D6053
	H'17	Data_out [22]	有符号 16 位	只读	D6054
	H'18	Data_out [23]	有符号 16 位	只读	D6055
	H'19	Data_out [24]	有符号 16 位	只读	D6056
	H'1A	Data_out [25]	有符号 16 位	只读	D6057
	H'1B	Data_out [26]	有符号 16 位	只读	D6058
	H'1C	Data_out [27]	有符号 16 位	只读	D6059
	H'1D	Data_out [28]	有符号 16 位	只读	D6060
	H'1E	Data_out [29]	有符号 16 位	只读	D6061
	H'1F	Data_out [30]	有符号 16 位	只读	D6062
	H'20	Data_out [31]	有符号 16 位	只读	D6063

MEMO